Research position

**Outcome:** Ph.D. **Location:** Scotland, United Kingdom

Recently interest in antimatter research has increased as facilities such as CERN have succeeded in trapping antimatter atoms to study their properties [1]. Theoretical treatment of antimatter collisions is needed in order to understand how it is destroyed by interacting with normal matter and thus to allow better trapping techniques to be developed [2]. There is also a growing interest in chemical reactions involving antimatter including the relatively long-lived antiprotonic helium system [3].

This project will investigate interactions between antimatter and ordinary matter. The work will include development of high performance computer software and calculation of potential energies of interaction for a number of key systems in antimatter research including H2 + antihydrogen atom. These potential energy surfaces (PESs) will then be used to calculate rovibrational bound states and reactive and non-reactive scattering properties. Specifically, the bound state energies and wavefunctions for these systems allow prediction and understanding of spectroscopic properties, for example energy levels and lifetimes of states. Reactive scattering results, for which current literature is sparse, give the rates of processes such as

H2 + antihydrogen atom â†’ Pn + Ps + H

which destroy antimatter by breaking up antiatoms and eventual annihilation of the proton-antiproton and electron-positron pairs in Pn and Ps respectively.

H2 + antihydrogen atom is a high priority system for the work at CERN along with charged variants such as H2+ + antiproton. The prototype molecule-antimolecule system H2 + antihydrogen molecule will also be tackled using techniques developed for simpler systems.

The project will make use of state of the art quantum chemistry techniques to calculate reaction rates as well as highly excited vibration-rotation energy levels. Computer programs developed for this project may also be made use of by future research projects on matter-antimatter interactions involving more complex systems such as larger molecules.

Candidates should have (or expect to achieve) a UK honours degree at 2.1 or above (or equivalent) in Chemistry, Physics or Chemical Physics.

Essential Background: A strong background in physical chemistry or physics or chemical physics, including experience of: atomic structure and chemical bonding and their description by quantum mechanics; basic principles of the quantum mechanical treatments of molecular electronic, vibrational and rotational motions.

Proficiency in basic calculus and algebra: differential and integral calculus of a single variable; complex numbers and the theory of polynomial equations, vector algebra in two and three dimensions, systems of linear equations and their solution, matrices and determinants.

Knowledge of: or proven aptitude for learning: advanced mathematical topics (calculus of several variables, group theory, eigenvalue equations); basic computer programming (for example Fortran) and modern techniques for molecular electronic structure determination (for example ab initio or Monte Carlo methods).

APPLICATION PROCEDURE:

â€¢ Apply for Degree of Doctor of Philosophy in Chemistry

â€¢ State name of the lead supervisor as the Name of Proposed Supervisor

â€¢ State â€˜Self-fundedâ€™ as Intended Source of Funding

â€¢ State the exact project title on the application form

When applying please ensure all required documents are attached:

â€¢ All degree certificates and transcripts (Undergraduate AND Postgraduate MSc-officially translated into English where necessary)

â€¢ Detailed CV

â€¢ Details of 2 academic referees

Informal inquiries can be made to Dr M Law (m.m.law@abdn.ac.uk@abdn.ac.uk) with a copy of your curriculum vitae and cover letter. All general enquiries should be directed to the Postgraduate Research School (pgrsadmissions@abdn.ac.uk)

This project will investigate interactions between antimatter and ordinary matter. The work will include development of high performance computer software and calculation of potential energies of interaction for a number of key systems in antimatter research including H2 + antihydrogen atom. These potential energy surfaces (PESs) will then be used to calculate rovibrational bound states and reactive and non-reactive scattering properties. Specifically, the bound state energies and wavefunctions for these systems allow prediction and understanding of spectroscopic properties, for example energy levels and lifetimes of states. Reactive scattering results, for which current literature is sparse, give the rates of processes such as

H2 + antihydrogen atom â†’ Pn + Ps + H

which destroy antimatter by breaking up antiatoms and eventual annihilation of the proton-antiproton and electron-positron pairs in Pn and Ps respectively.

H2 + antihydrogen atom is a high priority system for the work at CERN along with charged variants such as H2+ + antiproton. The prototype molecule-antimolecule system H2 + antihydrogen molecule will also be tackled using techniques developed for simpler systems.

The project will make use of state of the art quantum chemistry techniques to calculate reaction rates as well as highly excited vibration-rotation energy levels. Computer programs developed for this project may also be made use of by future research projects on matter-antimatter interactions involving more complex systems such as larger molecules.

Candidates should have (or expect to achieve) a UK honours degree at 2.1 or above (or equivalent) in Chemistry, Physics or Chemical Physics.

Essential Background: A strong background in physical chemistry or physics or chemical physics, including experience of: atomic structure and chemical bonding and their description by quantum mechanics; basic principles of the quantum mechanical treatments of molecular electronic, vibrational and rotational motions.

Proficiency in basic calculus and algebra: differential and integral calculus of a single variable; complex numbers and the theory of polynomial equations, vector algebra in two and three dimensions, systems of linear equations and their solution, matrices and determinants.

Knowledge of: or proven aptitude for learning: advanced mathematical topics (calculus of several variables, group theory, eigenvalue equations); basic computer programming (for example Fortran) and modern techniques for molecular electronic structure determination (for example ab initio or Monte Carlo methods).

APPLICATION PROCEDURE:

â€¢ Apply for Degree of Doctor of Philosophy in Chemistry

â€¢ State name of the lead supervisor as the Name of Proposed Supervisor

â€¢ State â€˜Self-fundedâ€™ as Intended Source of Funding

â€¢ State the exact project title on the application form

When applying please ensure all required documents are attached:

â€¢ All degree certificates and transcripts (Undergraduate AND Postgraduate MSc-officially translated into English where necessary)

â€¢ Detailed CV

â€¢ Details of 2 academic referees

Informal inquiries can be made to Dr M Law (m.m.law@abdn.ac.uk@abdn.ac.uk) with a copy of your curriculum vitae and cover letter. All general enquiries should be directed to the Postgraduate Research School (pgrsadmissions@abdn.ac.uk)

This project is advertised in relation to the research areas of the discipline of Chemistry. The successful applicant will be expected to provide the funding for Tuition fees, living expenses and maintenance. Details of the cost of study can be found by visiting View Website. THERE IS NO FUNDING ATTACHED TO THESE PROJECTS.

**Outcome:** Job

**Outcome:** Post-doctoral

**Outcome:** Fellowship

**Outcome:** Post-doctoral

**Outcome:** Ph.D.